
8-1

Reinforcement Learning

Lecture 8

Lecturer: Haim Permuter Scribe: Gal Rattner

I. INTRODUCTION

In the previous lectures we saw methods which selects actions according to an

estimation of an action-value function. In this lecture we instead consider methods that

uses a parameterized policy that selects actions using the learned policy weights. A value

function approximation might still be used to learn the policy weights, but action selection

is defined by the current state of the weights solely. This lecture is based on the book

by S.Sutton and A.Barto [2] and lecture number 7 in D. Silver course [1].

II. POLICY GRADIENT

In policy gradient methods the policy is determined by a parameter set. Consider

θ ∈ Rn to be the policy weights vector. Thus the policy is given by

π(a|s,θ) = Pr{At = a|St = s,θt = θ}, (1)

as the probability that action a is taken at time t, given that the state at time t is s and the

weights vector is θ. The policy gradient methods are learning the policy weights based on

the gradients of some performance measure η(θ). These methods seek to maximize the

performance, by training the weights vector, therefore the weights update rule is given

by gradient ascent, i.e.

θt+1 = θt + α∇̂θη(θt), (2)

where α is the step size parameter, and ∇̂η(θt) is the stochastic estimation of the gradient

of η(θt) with respect to the weights vector θ. In policy gradient methods, the policy can

by parameterized in many ways, as long as π(a|s,θ) is differentiable with respect to its

parameters, i.e. as long as ∇θπ(a|s,θ) exists. In order to ensure exploration, we demand

that the policy will never become deterministic, i.e. π(a|s,θ) ∈ (0, 1).

8-2

Example 1 (Softmax Policy) Consider the case of discrete and finite action space,

where each action-state pair receives a numerical preference h(s, a,θ) ∈ R according

to the learned policy parameters θ. The preference is given by a linear transformation

h(s, a,θ) = θTφ(s, a), (3)

where the features vector φ(s, a) is given by a feature extraction. We would like to give

higher probability to actions with higher preference value, using a softmax function, i.e.

π(a|s,θ) = exp (h(s, a,θ))∑
a′ exp (h(s, a

′,θ))

=
exp

(
θTφ(s, a)

)∑
a′ exp

(
θTφ(s, a′)

) , (4)

where for each state s the entire actions probabilities sums to one. Notice that the softmax

function satisfies the exploration demand, as all softmax outputs are within range (0, 1),

such that a deterministic probability is never reached.

III. POLICY GRADIENT THEOREM

Consider the episodic case where the performance measurement, η(θ), is given by the

term

η(θ) = vπθ(s0), (5)

where vπθ(s0) is the true value function for the policy πθ determined by the parameters

set θ, starting from the deterministic state s0. According to equation (2), the parameters

are updated with the approximation of the performance measure gradient. The policy

gradient theorem provide us with the analytic expression to the performance measure

gradient.

Theorem 1 (Policy Gradient Theorem) The policy gradient theorem states that

∇η(θ) =
∑
s

dπ(s)
∑
a

Qπ(s, a)∇θπ(a|s,θ), (6)

where Qπ(s, a) is the action-value function for policy π and dπ(s) is the weighting of

state s given by its steady-state distribution, i.e.

dπ(s) , lim
t→∞

Pr{St = s|A0:t−1 ∼ π}. (7)

8-3

Notice that dπ(s) is determined by how often state s is encountered starting at any S0

and following policy π, and this limit is assumed to exist and be independent of S0.

Proof 1 Assuming episodic case, with the performance measure as defined above and

the discount factor γ, the gradient is given by

∇vπθ(s0) = ∇θ

[∑
a

π(a|s)Qπ(s, a)

]
, ∀s ∈ S

(a)
=
∑
a

[
∇θπ(a|s)Qπ(s, a) + π(a|s)∇θQπ(s, a)

]
(b)
=
∑
a

[
∇θπ(a|s)Qπ(s, a) + π(a|s)∇θ

∑
s′,r

p(s′, r|s, a)(r + γvπ(s
′))

]

(c)
=
∑
a

[
∇θπ(a|s)Qπ(s, a) + π(a|s)

∑
s′

γp(s′|s, a)vπ(s′)

]
(d)
=
∑
a

[
∇θπ(a|s)Qπ(s, a) + π(a|s)

∑
s′

γp(s′|s, a)

∑
a′

[
∇θπ(a′|s′)Qπ(s

′, a′) + π(a′|s′)
∑
s′′

γp(s′′|s′, a′)vπ(s′′)
]]

(e)
=
∑
x∈S

∞∑
k=0

γkPr(s→ x, k, π)
∑
a

∇θπ(a|x)Qπ(x, a), (8)

where

(a) - follows the product rule,

(b) - follows the definition of Qπ(s, a),

(c) - follows that θ is independent of r,

(d) - follows single unrolling step (positioning the value function derivation argument

once),

(e) - follows multiple unrolling steps, where Pr(s→ x, k, π) is the probability to reach

from initial state s to state x after k steps, following policy π.

Now it is immediate to obtain

∇θη(θ) = ∇θvπθ(s0)

8-4

=
∑
s

(
∞∑
k=0

γkPr(s0 → s, k, π)

)∑
a

∇θπ(a|s)Qπ(s, a)

(f)
=
∑
s

dπ(s)
∑
a

Qπ(s, a)∇θπ(a|s),

(9)

where (f) is the on-policy distribution (episode relative amount of steps spent in state s

in average). �

IV. REINFORCE: MONTE CARLO POLICY GRADIENT

The policy gradient theorem in Equation (10) gives us an exact expression of the

gradient needed for applying gradient ascent step. The gradient expression can be

approximated by summing over the states following policy π weighted by γ times the

number of steps it takes to get to these states. Thus

∇η(θ) =
∑
s

dπ(s)
∑
a

Qπ(s, a)∇θπ(a|s,θ),

= Eπ

[
γt
∑
a

Qπ(St, a)∇θπ(a|St,θ)

]
. (10)

Now we have an expression that include summation over all actions for each state St. In

order to replace the sum over a we multiply and divide by the probability to select each

action At according to π, to obtain

∇η(θ) = Eπ

[
γt
∑
a

π(a|St,θ)Qπ(St, a)
∇θπ(a|St,θ)
π(a|St,θ)

]
(a)
= Eπ

[
γtQπ(St, At)

∇θπ(At|St,θ)
π(At|St,θ)

]
(b)
= Eπ

[
γtGt

∇θπ(At|St,θ)
π(At|St,θ)

]
(c)
= Eπ

[
γtGt∇θ lnπ(At|St,θ)

]
, (11)

where (a) is the replacement of a with an action At ∼ π, (b) follows that

Eπ[Gt|St, At] = Qπ(St, At), (12)

8-5

and (c) follows the equality ∇ lnx = ∇x
x

.

We now hold a quantity as shown in Equation (11) that can be sampled each time

step, whose expectation equals to the gradient according to the policy gradient theorem.

Applying the update rule as a gradient ascent algorithm yields

θt+1 = θt + αγtGt∇θ lnπθ(At|St,θt), (13)

where α is a fixed step size parameter. This algorithm is called REINFORCE after [3].

The update rule as described in Equation (13) increases the parameter vector in the

direction that increases the probability of taking At when returning to St in the future,

and is proportional to the return Gt at each time step. Moreover, the division of the

gradient vector by the probability of taking action At eliminates the advantage given to

actions that are taken more often. During this lecture, the return Gt at each step t is

given by

Gt = Rt+1 + γRt+2 + · · ·

=
T−1∑
s=t

γs−tRs+1, (14)

where t ∈ {1, . . . , T−1}. REINFORCE is a Monte-Carlo algorithm, well defined only for

the episodic case (as we learned in Lecture 3) where all updates are made retrospectively

after each episode is completed, as described in the algorithm below.

Algorithm 1 REINFORCE (episodic)
input: π(a|s,θ) - a differentiable policy parameterization.

initialize parameters vector θ ∈ Rd.

repeat forever:

Generate episode states and take actions according to π(·|·,θ), receive sequence

{S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT}.

for each step in t = 0 . . . T − 1 do

G← return from step t

θ ← θ + αγtG∇θ ln π(At|St,θ)

8-6

A. REINFORCE with baseline

The policy gradient theorem in Equation (10) can be modified to a general form that

includes a comparison of the action-value function to some arbitrary baseline b(s), i.e.

∇θη(θ) =
∑
s

dπ(s)
∑
a

(Qπ(s, a)− b(s))∇θπ(a|s,θ). (15)

Adding such a baseline argument can reduce the .Notice that the baseline function can

be any function or random variable, as long as it does not vary with a. The validity of

Equation (15) is true for the internal summation subtraction always sums to zero for any

b(s), i.e. ∑
a

b(s)∇θπ(a|s,θ) = b(s)∇θ
∑
a

π(a|s,θ)

= b(s)∇θ1

= 0. (16)

The generalized policy gradient theorem with baseline yields the REINFORCE with

baseline gradient update rule, i.e.

θt+1 = θt + αγt (Gt − b(St))∇θ ln πθ(At|St,θt), (17)

where using a baseline which is uniformly zero, leaves us with the previous REINFORCE

update rule as described in Equation (13).

Using the REINFORCE with baseline algorithm, a natural choice for the baseline will

be the value function estimation v̂(St,w), where w ∈ Rm is the weight vector learned for

the estimation, as described in the previous lecture. Using the value function estimation

as a baseline may improve convergence and speed it up as shown in ([2]), the algorithm

is described below.

8-7

Algorithm 2 REINFORCE with baseline (episodic)
input: π(a|s,θ) - a differentiable policy parameterization.

input: v̂(St,w) - a differentiable state-value parameterization.

parameters: αθ, αw - step sizes.

initialize parameters vector θ ∈ Rd and state-value weights w ∈ Rm.

repeat forever:

Generate episode states and take actions according to π(·|·,θ), receive sequence

{S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT}.

for each step in t = 0 . . . T − 1 do

G← return from step t

δ ← G− v̂(St,w)

w ← w + αwγ
tδ∇wv̂(St,w)

θ ← θ + αθγ
tδ∇θ ln π(At|St,θ)

REFERENCES

[1] D. Silver. Lecture notes in advanced topics in reinforcement learning, lecture 7, January 2015.

[2] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT press Cambridge, 2017.

[3] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. In

Reinforcement Learning. Springer, 1992.

	Introduction
	Policy Gradient
	Policy Gradient Theorem
	REINFORCE: Monte Carlo Policy Gradient
	REINFORCE with baseline

	References

